Approximate Reachability with BDDs using Overlapping Projections *

Shankar G. Govindaraju! , David L. Dill}, Alan J. Hu?, and Mark A. Horowitz

1 Computer Systems Laboratory

Stanford University
Stanford, CA 94305, USA

Abstract

Approximate reachability techniques trade off accuracy
with the capacity to deal with bigger designs. Cho et
al [3] proposed approximate FSM traversal algorithms
over a partition of the set of state bits. In this paper
we generalize it by allowing projections onto a collec-
tion of nondisjoint subsets of the state variables. We
establish the advantage of having overlapping projec-
tions and present a new multiple constrain function for
BDDs, to compute efficiently the approximate image
during symbolic forward propagation using overlapping
projections. We demonstrate the effectiveness of this
new algorithm by applying it to several control modules
from the I/O unit in the Stanford FLASH Multiproces-
sor. We also present our results on the larger ISCAS 89
benchmarks.

1 Introduction

Binary Decision Diagrams (BDDs) [1] have enabled for-
mal verification to tackle larger hardware designs than
before. However for many large design examples, even
the most sophisticated BDD-based verification meth-
ods cannot produce exact results because of BDD-size
blowup. One alternative is to trade accuracy for BDD
size requirements, by using approximate verification al-
gorithms.

Computing the set of reachable states from an ini-
tial set is a basic component of many verification algo-
rithms and has other applications as well. An overap-
proximated reachable set can be viewed as an under-
approximated don’t care set, which has applications in
the synthesis domain. It can be used to simplify sym-
bolic model checking efforts, by preventing the model
checking algorithms from exploring unreachable states.

*This work was supported by DARPA contracts DABT63-94-C-
0054 and DABT63-96-C-0097. The content of this paper does not
necessarily reflect the position of the policy of the Government and
no official endorsement should be inferred.

DISTRIBUTION STI_\TEMENT A
Approved for Public Release
Distribution Unlimited

2 Department of Computer Science

University of British Columbia
Vancouver, B.C, Canada V6T 174

1.1 Related Work

Cho et al [3] proposed approximate algorithms to do
symbolic forward propagation. Their basic idea was
to partition the set of state bits into mutually disjoint
subsets, and then do a symbolic forward propagation on
each individual subset. The individual subsets can be
viewed as submachines which have in some ways been
torn from other submachines. The original problem is
thus reduced to doing the exact symbolic forward propa-
gation over smaller submachines. This induces extra de-
grees of freedom for the submachines, and hence yields
an overapproximation of the reachable state space.
They also propose different variants of the approxi-
mated symbolic forward propagation algorithm: MBM
(Machine By Machine) and FBF (Frame By Frame)
which basically differ in the way they model the interac-
tion among the various submachines. FBF allows inter-
actions among the submachines at each time frame of
a least fixed point routine, and hence allows for tighter
don’t care sequences to constrain the other submachines.
MBM on the other hand allows interaction only after a
complete least fixed point has been computed for a sub-
machine. As a result the sequencing information is lost
when trying to constrain the other submachines. They
further propose two variants of the FBF scheme, RFBF
(Reached Frame By Frame) and TFBF (To Frame By
Frame), which again differ in the constraint set posed
to the various sub machines during the course of the
least fixed point routine. Cho et al [3, 4] also propose
heuristics on how to partition the set of state bits.

1.2 Contribution

In this paper, we improve on the approximate symbolic
reachability analysis of Cho et al {3] by allowing for
overlapping projections. We establish the need for over-
lapping projections, and propose a new multiple con-
strain function for BDDs, which allows us to compute
efficiently the image of an implicit conjunction of BDDs
with possibly overlapping support, using Boolean func-
tion vectors. We apply our algorithm on a real, large
design and show its relative superiority over the FBF al-
gorithms. Of course our scheme cannot be less accurate
than the FBF method, since overlapping projections in-
clude disjoint partitions as a special case.

20020411 090

2 Background

We analyze synchronous hardware, given as a Mealy
machine M = (z,y, go, n), where z = {z1, ...,z } is the
set of state variables, and y is the set of input signals.
The set of states is given by [z — B], where B = {0,1}.
The initial state go € [z — B]. The next state function
isn:fz— B]x[y—> B]—[z— Bl

In our applications, sets can be viewed as predi-
cates, since we can form the characteristic function cor-
responding to a set. BDDs can be used to represent
predicates and manipulate them [2]. For example, let
R(z) be a predicate with support in z, we can compute
the image of R under n as

Im(R(z),n(z,y)) = A\z'.3z,y.(z' = n(z,y)) A R(z).

Im produces a predicate with support z', which is 1
iff ' is in the image of R under n. The set of reach-
able states in M can be computed by a least fixpoint
iteration [2]

Reach(M) = Up R.Az.(qo(z) V Im(R(z),n(z,y))).

2.1 Approximation by Projections

Let w = (w1, ..., wp) be a collection of not necessarily
disjoint subsets of 2. Each subset will be referred to as
a block. We define the operator a;(R) which projects
a predicate R(z) onto the variables in w;. Intuitively,
a;(R) represents a set of Boolean vectors that agree for
the variables in w; with some Boolean vector satisfying
R. Let z consist of all of the Boolean variables in = that
are not in w;, then we can define o; as

a;j(R(z)) = Az.32.R(z).

From the explanation above, it should be clear that the
set of Boolean vectors satisfying R is a subset of those
satisfying «;(R). This can be written using logical im-
plication as R — a;(R). The approximation operator
o projects a predicate R(z) onto the various w;’s and
returns the tuple,

a(R(z)) = (a1(R), ..., ap(R)).

The concretization operator -y conjoins the collection of
projections:

p
’)’(Rl,.. . ,Rp) = /\ Rj.
j=1

Lemma 1 Given a collection of subsets (wi,...,wp)
and a predicate R(z), R — v(a(R)).

The proof for this lemma is simple since R = a;(R) for
all j. Thus projecting a predicate R onto a collection
of subsets, and then concretizing the projections by ~y
results in an overapproximation.

Let R = (Ry,...,Rp) and S = (53,...,S;) be two
equally sized tuples. We define the join operator be-
tween R and S as follows:

(Rl,...,R,,)U(Sl,...,S,,)=(R1V51,...,R,,VS,,)

Note that v(R) U~(S) C v(RUS). Hence the join

operator is an approximation of set union.

The operator a allows us to represent a big BDD
with support in z by a tuple of potentially smaller BDDs
with limited support, at the cost of loss of accuracy. In
contrast, y can potentially result in a bigger BDD with
bigger support, hence we would like to avoid computing
v¥(Ru1, ..., Rp) explicitly. We therefore need to compute
the image of an implicit conjunction and return the re-
sult as an implicit conjunction of the elements of a tuple.
Let I'mgp return the projected version of the image of
an implicit conjunction of BDDs.

Imgp(R,n) = ao{Im(y(R), n(z,y)))

Using Img,,, we can compute an overapproximation,
Reachg,(M), of the reachable states for a machine M
as follows:

Reach,p(M) = lfp R.(a(go) U Imep(R,n))

Note that the least fixpoint routine above starts with
R = (0,...,0), and finally after reaching convergence,
it returns a tuple R to Reachqp(M).The overapprox-
imate reachable states set is the implicit conjunction

v(Reachqp(M)).
Theorem 1 For a given Mealy machine M,

Reach(M) — ~y(Reachq.p(M)) (1)

The proof relies on the observation that during compu-
tation of Reachqp(M), the image at every iteration of
the least fixpoint routine is an overapproximation. The
formal proof is omitted.

3 Overlapping Projections

3.1 Motivation for Overlaps

Overlapping projections can capture limited interac-
tions among state machines while keeping the sizes of
the BDDs under control. We discuss some common
scenarios where this happens in this subsection. In con-
trast, disjoint partitions can only capture interactions
among a set of state machines by including all of them
in a single projection, which often leads to large variable
subsets, that cause BDD size blowup.

Often, two rather big state machines have a small
interface, which can be captured by adding extra blocks
to our collection w, that merely include the bits through
which the two machines communicate. Design modules
usually have a master FSM that communicates with a
number of other slave FSMs. A collection of overlapping
subsets allows us to capture the master-slave behavior
by having blocks, where the master is paired with each
of its slaves in different blocks. We can further capture
the correlation between various FSMs by having small
blocks with pairs of FSMs in them.

In each of the these cases, disjoint partitions require
larger sized blocks to capture the same property. Thus
overlapping subsets allow us to hit intermediate points
in the memory space vs strength of invariant tradeoff
curve, with disjoint partitions on one extreme and exact
reachability on the other.

3.2 Multiple Constrained Image

The key step in symbolic forward propagation algo-
rithms is image computation.

ImaP(R1 n) = (Sla L] SP) = a(Im(’Y(R)an(x: y)))

We would like to be able to compute the S;’s sepa-
rately, without computing I'm(y(R),n). Clearly S; can
only depend on the next state functions of the variables
appearing in the j** block, w; in w. In our imple-
mentation, n(z,y) is represented as a set of predicates
{ni(z,y) | 1 <i < k}, where each predicate determines
the value of a bit in the next state. Let o;(n) be the
subset of predicates determining the next state for the
bits in w;. Clearly, S; = Im(y(R), a;(n))

To avoid unnecessary BDD blowup, we want to avoid
the explicit conjunction y(R). S; can be computed, by
forming the next state relation for block w; and using
early quantification [2, 8). However this did not work
when we tried it on our larger examples. Instead Coud-
ert and Madre [5, 8] have shown how to compute the im-
age of a Boolean function vector, using the generalized
cofactor (also called constrain) operator (}). (f { g)(z)
has the same value as f(z) when g(z) holds, and usually
results in a smaller BDD than f. Generalized cofactor
allows us to cofactor a function, f, with respect to an-
other function, g, and reduces to ordinary cofactor when
¢ is a single variable. So f | #; is the cofactor of f when
x; = 1.

Coudert and Madre [5] show that Im(y(R), a;(n))
= Im(1,a;(n) | v(R). To avoid computing the large
BDD for y(R), it is tempting to compute a;j(n) | R; |
Ry ... | R,. This works well if the supports of R;’s
are disjoint. (McMillan has shown [7] that if g and A
have independent support, then f | (gAh) = (f {
g) 4 h). However since we have overlapping subsets,
the naive method is incorrect. For example, consider
f=wry,g=wand h=wVwzy. fl(gAh)=1,and
so Im(g A h, f) = {1}. However (f g) | h = w V wzy,
and Im(1,(f | g) L h) = {0,1} (we used the variable
order w < z < y for this example). .

Instead, for overlapping projections, we propose:the
following method of multiple constrain. Let (z1,...,2p)
be dummy state bits with corresponding next state func-
tions (Ri,...,Rp). The multiple constrain method re-
lies on the following key observation

Im(7(R1a s ,Rp)1aj(n)) =
Im(1,{aj(n),Ry,...,Rp)) L z1 L z2... L 2% »

In words, we first extend the Boolean function vec-
tor a;(n) with (Ry,...,R,), and compute the range
of the extended vector to get the set of next states.
Every point in the range of [a;(n), Ry,. .., Ry will be
“tagged” with the dummy variables z;, which keep track
of which of the R;’s were satisfied in the present state.
The required image is the part of the range where all
the dummy bits (z1,...,2p) are 1, where all the R;’s
were satisfied by the present state. Selecting the co-
factors where z; = z3 = ... = z, = 1 finds the BDD
for the relevant part. of the range while eliminating the

dummy z; variables. In our example, our multiple con-
strain would compute (f | h) | (¢ { h) = 1. Hence
we get Im(1,(f | h) L (g 4 h)) = {1} which matches
Im(f,gAh).

We can optimize on the usual recursive co-domain
partitioning algorithm [5], by avoiding computing the
parts of the range that will be discarded. Hence, we
start with [a;(n), Ry, ..., R,], constrain the vector of
predicates, [a;(n),R:,...,Rp_1], with R,, then con-
strain the resulting [a;j(n), R1, ..., Rp—2], with the con-
strained R,—; and so on till we constrain the resulting
a;(n) with the final R;. Thereafter we can do the stan-
dard recursive image computation given by Coudert and
Madre [5].

function Im.,.((Ri,...,Rp), (n1,...,0m))
v(—[nl,...,nm,Rl,...,Rp '
for j=p down to 1 by 1 do
v+ v]um+j]
endfor
return Im(1, {v[1],...,v[m}})

Our least fixpoint routine starts with R: (0,...,0) and
computes the tuple Reach,), as,

lfp R.(a(go) U (Immc(R,a1(n)),. .. yImap(R, ap(n))

Our algorithm most closely resembles the RFBF al-
gorithm proposed by Cho et al [3], but differs in that
we allow for overlapping projections and compute the
image for each block with our new Imy,. operator. It
is also straightforward to do MBM, TFBF, TMBM (3]
traversals using overlapping projections.

3.3 Choice of Collection of Subsets

Our scheme for choosing the collection of subsets is
presently manual. First, we find the FSMs by inspect-
ing the HDL source (we had access to the RTL descrip-
tion for our design examples). For each state bit z; we
compute a score by counting the number of predicates
n;(z,y) it supports. To each machine, a score is as-
signed which is the sum of the scores of its state bits.
The two machines (M;, M3) with the highest scores are
identified as master FSMs. If the state bits of machines
M; and M, support the bits of the master machine M,
in their next state predicates, then M; and M; are slaves
of M;. The different slave machines for each of the mas-
ter FSMs are identified. We then form blocks by pairing
the master FSMs with their slaves. Thus, in this case,
we would add the blocks (M1, M;) and (M, M;) to the
collection of subsets.

Often some FSMs are very small. The corresponding
small blocks can then be aggregated with other blocks
without running into intermediate image BDD size ex-
plosion. The converse problem is some FSM, M; may
have large state registers, resulting in big blocks.. If so,
we try to prune these blocks by exploiting the small in-
terface phenomenon, described in Section 3.1. We also
add a block with the master FSMs,to capture the corre-
lation between the FSMs. We ensure that no block w;
in the collection w is a proper subset of another block
w; € w, since this would clearly be wasteful.

4 FLASH Design Example

The Stanford FLASH (Flexible Architecture for SHared
memory) multiprocessor [6] efficiently integrates sup-
port for cache coherent shared memory and high per-
formance message passing. Each node in FLASH con-
tains a microprocessor (MIPS R10000), a portion of the
machine’s global memory, a port to the interconnection
network, an I/O interface and a custom node controller
called MAGIC (Memory And General Interface Con-
nect). MAGIC handles all communication both within
the node and among nodes, using a embedded super-
scalar, dual issue RISC processor core. We focus on the
control logic in the I/O unit, since bugs more often than
not reside in the control logic rather than the datapath.
(The MAGIC chip design description has a rather clean
division between the control and datapath). Table 1
gives a brief description of the various control modules
in the I/O unit.

Table 1: Control Modules in I/O unit in FLASH

Module State Bits | Input Bits
10InboxQCtl | 23 8
RegDecode 37 27
ReqService 41 58
IOMiscBusCtl | 44 18
Pcilnterface 88 55

5 Experiments

We built a LISP interface to David Long’s BDD pack-
age. Our approximate algorithm returns a superset of
the reachable states, which is also an invariant of the
design. To quantify the size of the superset, we compute
the satisfying fraction of the the superset. (Please refer
to the appendix for the algorithm that was used to com-
pute an upper bound on the satisfying fraction). Since
projection induces an overapproximation, the smaller
the satisfying fraction, the stronger the invariant.

We preset the maximum number of BDD nodes (BDD
Node Limit) for each experiment. Given our partition-
ing heuristics, we try to get the strongest invariant us-
ing overlapping projections. We compare our results
with the disjoint partition schemes. The same variable
ordering was used for both the schemes. Node Count
keeps track of the highest number of nodes that existed
at a time during the experiment. The Iter column lists
the number of iterations needed to reach the fixpoint.
The last column under the heading Relative is the ratio
between the satisfying fraction with disjoint partitions
and the satisfying fraction with overlapping projections.
Thus, higher the figures in the Relative column, the str-
onger is the invariant with overlapping projections.
Table 2a: I0InboxQCtl Invariant Strengths: Note that
to improve upon the invariant with satisfying fraction
5.004883e-03, in the case of disjoint partitions, the BDD
node count had to jump from 28,254 to 76,630. which
is a 2.71 times increase in the BDD node count. The

x 10~ 1OMiscBusQCtl Invariant Strangth
T T T

P + + Disjoint
o o o Overap | |

Satistying Fraction of Final invarlant

. . N

'
o 0.5 1 1.5 2 2
Peak Number of BDD Nodes x 10°

Figure 1: IO0MiscBusCtl: Projections vs Partitions

last entry under disjoint partitions was computed with
all the state variables in a single block, which clearly
gives the strongest possible invariant. Overlapping pro-
jections produces the strongest invariant at much lower
node count.

Table 2b: ReqDecode Invariant Strengths: For node
limits of 1.0 million and 1.5 million, our algorithm with
overlapping projections yields stronger invariants (by a
factor of 1.252 and 1.562 respectively). Further, for the
node limit of 1.0 million, our algorithm with overlapping
projections uses lesser number of BDD nodes compared
to the FBF runs with disjoint partitions, for a stronger
invariant.

Table 2c: ReqService Invariant Strengths: Here, with
disjoint partitions, the node count penalty goes up from
407,728 to 11,007,330 (a factor of 27) before we see
any improvement in the strength of the invariant. The
last entry under disjoint partitions was computed with
all state variables in a single block, which extracts the
strongest invariant. Note that the same invariant is ex-
tracted by our overlapping projections scheme at much
lower node count penalty (1,995,304 nodes vs 11,007,330
nodes, which is lower by a factor of 5.517).

Table 2d: IOMiscBusCtl Invariant Strengths: Note
that with node limits of 1.5 million and 2.0 million,
our algorithm with overlapping projections yields sig-
nificantly stronger invariants (by a factor of 13.973 and
71.329 respectively), at only incremental extra cost in
terms of BDD node count. In Figure 1, we plot the sat-
isfying fraction of the final invariant vs the peak number
of BDD nodes. We see that the solid curve for overlap-
ping projections is considerable below the other curve
for disjoint partitions, indicating that overlapping pro-
jections give stronger invariants with lower BDD node
counts compared to disjoint partitions.

Table 2e: Pcilnterface Invariant Strengths: The final
invariant with overlapping partitions is much stronger
(factor of 5.932) than that obtained with disjoint par-
titions. Note that even as the node limit is raised from
2 million to 25 million, there is no improvement in the
disjoint partition case.

6 ISCAS Benchmarks

We have also tried our algorithm on the ISCAS 89
benchmark suite. We use the partitions used by Cho
et al [3] to identify the FSMs in the design. We chose
the variable subsets by adding small overlaps to some
of their blocks. We are unable to report comparative
figures for s35932 because we could not procure the
partitions used by Cho et al for s35932. In the case
of of $5378, our version of s5378 had 179 flip flops as
opposed to the 164 flip flops in the one used by Cho et
al. We report our results on the remaining benchmarks.
The numbers under the Disjoint Partitions column cor-
respond to the results we got by running TMBM algo-
rithm [3] (s13207, s15850, s38584) and RFBF algorithm
(s1238, s1423) on the partitions used by Cho et al [3]
Table 3: ISCAS-89 Invariant Strengths: Note that we
report orders of magnitude improvement in the strength
of the invariant for s13207 and s38584. The numbers in
Table 3 under overlapping projections are upper bound
estimates of the satisfying fraction of the final invari-
ant. Thus, the invariant with overlapping projections
is stronger, at least by a factor equal to the figures un-
der the Relative column. (TMBM algorithm starts off
as TFBF and switches to MBM after a few iterations.
Since we are using TMBM algorithm for some circuits,
the Iter column in Table 3, lists the number of itera-
tions of doing TFBF + the number of iterations in the
outer greatest fixpoint of MBM).

7 Conclusions

In this paper we have proposed a new approximation
scheme that enables us to do symbolic forward reach-
ability analysis over an overlapping projection of the
set of state bits. The approximation scheme results in
tighter overapproximations compared to earlier schemes
based on disjoint partitions. Our experiments show that
a small amount of appropriately chosen overlaps in a
given projection can substantially improve the quality
of the overapproximation. Overlapping projections al-
low us to hit intermediate points in the memory space vs
strength of invariant tradeoff curve, with disjoint par-
titions on one extreme and exact reachability on the
other.

We have also proposed a new multiple constrain func-
tion for BDDs, that enables us to compute efficiently the
image of an smplicit conjunction of BDDs with possibly
overlapping support, using Boolean function vectors.

We further need to look at automatic methods for
choosing the collection of subsets, from gate level de-
scriptions.

8 Acknowledgments

We thank David Long for his quick responses for BDD
package support. We thank Enrico Macii for sending
us the partitions that were used by Cho et al in their
paper [3]. We further thank Jules Bergmann for helping
us use his tool, ver, as a front end Verilog parser for the
FLASH benchmarks.

9 Appendix

9.1 Approximating Sat_Fr of Superset

Given S : (Si,...,Sp), corresponding to the collection
w : (wy,...,w,), we want an upper bound on sat_fr
of v(S). If elements of S have mutually disjoint sup-
port, we could compute sat_fr exactly as [T%_, sat_fr(:S;).
However here, S;’s may have overlapping support. Our
greedy algorithm computes sai_fr of a superset of ¥(S),
by using the fact, Iz.(a A b) C (3z.a) A (3z.b).

A set Z is used to keep track of which variables to
hide existentially before computing sat_fr of each block.
At every step the BDD S,,, with the lowest sat_fr (after
hiding existentially variables in Z from S,,), is picked.
Its sat_fr is cuamulatively multiplied to f, and variables
in w,, are added to set Z.)

Z+ 0 f+«10

for j=1 up to p by 1 do
find m, s.t. Vi.(sat.fr(32.5m) < sat_fr(3Z.S;))
f+ fxsat_fr(3Z.S,,)
Z 4+ ZUwpy,

endfor

return f

An alternative approach, Monte Carlo simulation, ap-
pears to be ineffective because of the extreme sparseness
of the state space covered by v(S).

References

[1] Bryant, R. E., “Graph-Based Algorithms for Boolean Func-
tion Manipulation,” IEEE Transactions on Computers, Vol.
C-35, No. 8, pp. 677-691, August 1986.

[2] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D, L,
and Hwang, L. J., “Symbolic Model Checking: 10?0 States
and Beyond,” Proceedings of the Conference in Logic in
Computer Science, pp. 428-439, 1990.

[3] Cho, H., Hachtel, G., Macii, E., Pleisser, B., and Somenzi,
F., “Algorithms for Approximate FSM Traversal Based
on State Space Decomposition,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 15, No. 12, pp. 1465-1478, December 1996.

[4] Cho, H., Hachtel, G., Macii, E., Poncino, M., and Somenzi,
F., “Automatic State Space Decomposition for Approximate
FSM Traversal Based on Circuit Analysis,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 15, No. 12, pp. 1451-1464, December 1996.

[5] Coudert, O., and Madre, J. C., “A Unified Framework for
the Formal Verification of Sequential Circuits,” IEEE Inter-
national Conference on Computer-Aided Design, pp. 126-
129, 1990.

[6] Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni,
R., Gharachorloo, K., Chapin, J., Nakahira, D., Baxter, J.,
Horowitz, M., Gupta, A., Rosenblum, M., and Hennessy, J.,
“The Stanford FLASH Multiprocessor,” Proceedings of the
21st International Symposium on Computer Architecture,
pp- 301-313, April 1994.

McMillan, K. L., “A Conjunctively Decomposed Boolean
Representation for Symbolic Model Checking,” In Proceed-
ings of Computer-Aided Verification, pp. 13-25, 1996.

[8] Touati, H. J., Savoj, H., Lin, B., Brayton, R. K., and
Sangiovanni-Vincentelli, A., “Implicit State Enumeration
of Finite State Machines using BDDs,” IEEE International
Conference on Computer-Aided Design, pp. 130-133, 1990.

[7

—_—

Table 2: FLASH Design Example Results

Node Limit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Iter | Node Count Sat. Fr. Iter | Node Count
30000 5.004883e-03 | 20 28254 5.004883e-03 | 20 28254 1.000
60000 ” ” 7 4.943967e-03 | 20 53740 1.012
70000 ” ” ” 3.967404e-03 | 20 64462 1.262
80000 3.967404e-03 | 20 76630 3.967404e-03 | 20 64462 1.000
Node Limit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Tter | Node Count Sat. Fr. Iter | Node Count
50000 2.184883e-05 | 20 33408 2.184883e-05 | 20 33408 1.000
200000 2.107944e-05 | 20 134536 1.979293e-05 | 20 171448 1.065 °
1000000 1.274049¢-05 | 33 980968 1.017604e-05 | 20 608726 1.252
1500000 ” ” ” 8.156174e-06 | 20 1195109 1.562
2500000 3.168825e-06 | 25 2032890 3.168825e-06 | 25 2032890 1.000
Node Limit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Iter | Node Count Sat. Fr. Iter | Node Count
50000 1.658440e-02 | 34 23662 1.658440e-02 | 34 23662 1.000
500000 1.351655e-03 | 44 407728 1.053363e-03 | 37 470642 1.283
750000 ” ” ” 1.039535e-03 | 40 537578 1.300
1800000 » ” ” 1.039460e-03 | 40 1776965 1.300
2000000 ” ” ” 1.036219e-03 | 44 1995305 1.304
12000000 || 1.036219e-03 | 44 11007330 ” ” ? 1.000
Node Limit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Iter | Node Count Sat. Fr. Iter | Node Count
1000000 4.210770e-04 | 4 104135 4.210770e-04 | 4 104135 1.000
1500000 3.810450e-04 | 4 1173863 2.726912e-05 | 4 1244294 13.973
2000000 ” ” » 5.342066e-06 | 4 1353024 71.329
3000000 5.342066e-06 | 4 2556733 7 ” 7 1.000
Node Limit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Iter | Node Count Sat. Fr. Iter | Node Count
500000 3.574305e-03 | 21 283186 1.168328e-04 | 50 228390 30.593
1000000 1.041354e-05 | 55 598257 1.041354e-05 | 55 598257 1.000
2000000 9.463498e-07 | 71 1616055 6.311379e-07 | 71 1293062 1.499
25000000 » 7 ? 1.595220e-07 | 71 20851528 5.932
Table 3: ISCAS 89 Benchmark Results
Circuit Disjoint Partitions Overlapping Projections Relative
Sat. Fr. Iter | Node Count Sat. Fr. Iter | Node Count
s1238 || 7.036972e-02 3 59360 6.320953e-03 4 73849 11.133
s1423 | 2.985005e-03 | 37 310461 2.193374e-03 | 248 1032286 1.361
§13207 || 3.421447e-106 | 10+6 161447 1.136200e-115 | 10+5 198779 3.3208e+-08
s15850 || 5.840135e-102 | 10+5 271093 3.937940e-102 | 10+4 336048 1.483
538584 || 6.494194e-41 | 10+2 646258 5.764063e-57 | 10+5 1853461 8.876e+15

